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概要
P. Scholze に始まるパーフェクトイド環とその傾化の理論は、混標数の可換環論において
有力な手法である。近年、そのネーター近似としてパーフェクトイド塔とその傾化の理論が
導入された。本講演では、Scholzeの理論の中心的道具であった Fontaineの写像をパーフェ
クトイド塔に応用することで得られた結果を紹介する。

本講演は伊城慎之介氏と下元数馬氏との共同研究 [HIS26]の内容に基づく。

1 導入
数論において、正標数の理論との類似を手がかりとして混標数の現象を理解するという手法

は基本的かつ重要な考え方である。P. Scholzeは、この考え方を統一的に捉える理論的枠組みの
ひとつとしてパーフェクトイド理論 (perfectoid theory) を構築した。この理論はその後 B.

Bhatt や下元数馬氏によって可換環論へと応用され、Y. André による直和因子予想の完全解決
を契機として、現在では混標数の可換環論における強力な手法として位置付けられている。
パーフェクトイド理論における中心的な操作の一つが傾化 (tilting) である。混標数パーフェ

クトイド環 Aに対し、その傾化 (tilt) と呼ばれる正標数パーフェクトイド環 A♭ が対応する。両
者は Fontaineのモノイダル写像と呼ばれる写像

] : A♭ → A

によって結びつけられる。一方、混標数パーフェクトイド環は決してネーター的でない。この困
難を克服するため、伊城–仲里–下元は、パーフェクトイド環を近似する環の拡大列としてパー
フェクトイド塔 (perfectoid tower) とその傾化の概念を導入した（[INS25]）。
このような背景のもと、本研究では Fontaineのモノイダル写像をパーフェクトイド塔に対して

応用することを試みた。その結果、パーフェクトイド塔の完整閉と、その傾化の完整閉性を比較
することに成功した（定理 3.6）。さらに、分岐理論に由来する新たなパーフェクトイド塔の構成
法を与え、その傾化の正規性を証明した（定理 3.7と系 3.8）。
本講演（および本稿）では、まず Fontaineの写像とそのパーフェクトイド環に対する応用を概
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説し、その後、パーフェクトイド塔に対して得られた結果について説明する。
本稿を通して、素数 p > 0を固定する。また、環といえば単位元をもつ結合的可換環のことと

する。

2 パーフェクトイド環と Fontaineの写像
この節では、まずパーフェクトイド環を説明し、Fontaine の写像の定義とその応用を概説す

る。詳細については [ČS24, §2.1]および [EHS24]を参照してほしい。
Fp 代数が完全 (perfect) であるとは、Frobenius自己準同型 x 7→ xp が全単射であるときを

いう。パーフェクトイド環は完全 Fp 代数の混標数への一般化である。その定義にはさまざまな
同値な特徴づけが存在するが、本稿では、Witt環の知識を必要とせず、またパーフェクトイド塔
との関係が最もわかりやすい次の定義を採用する。

定義 2.1 (cf. [INS25, Theorem 3.50]). 環 Aがパーフェクトイド (perfectoid) であるとは、次
の条件を満たす元 $ を含むときをいう。

(1) p ∈ $pAであり、かつ、Aは $ 進完備かつ分離的である。
(2) A/$pA上の Frobenius自己準同型は環の同型 A/$A

∼=−→ A/$pAを誘導する。
(3) 乗法的な写像

Aϖ-tor → Aϖ-tor; x 7→ xp

は全単射となる。ここで Aϖ-tor := {x ∈ A | ∃n > 0 s.t. $nx = 0}である。

例 2.2. (1) Fp 代数 Aがパーフェクトイドであることは、Aが完全であることと同値となる。
(2) 完備正則局所環 (R,m, k)で剰余体 k が標数 pの完全体であるものを考える。Cohenの構
造定理より、R ∼= W (k)[[x1, . . . , xd]]/(p − f)と書ける。ただしW (k)は k のWitt環を
表し、f = x1 または f ∈ (x1, . . . , xd)

2 である。このとき、x1, . . . , xd の pべき乗根（の
整合系）をすべて添加して得られる環(

W (k)[x
1

p∞

1 , . . . , x
1

p∞

d ]/(p− f)

)∧

の p進完備化はパーフェクトイドである。Rが分岐している場合、すなわち p ∈ m2 の場
合のこの結果は下元 [Shi16]によるものである。

パーフェクトイド環の他の例については、[BIM19, Example 3.8]に簡潔にまとめられている。

以下、Aは Fp 代数でないパーフェクトイド環とし、$ ∈ Aを定義 2.1のようにとる。

定義 2.3. Fp 代数の射影極限

A♭ def
= lim←−

Frob

A/pA = lim←−(· · ·
Frob−−−→ A/pA

Frob−−−→ A/pA)

を Aの傾化 (tilt) と呼ぶ。

A♭ は完全 Fp 代数であることが容易に確かめられる。このように、パーフェクトイド環 Aに対
して完全 Fp 代数 A♭ を対応させることができる。パーフェクトイド理論の目的の一つは、Aの環



論的性質と A♭ のそれを比較することである。しかし、Aと A♭ は標数が異なるため、両者の間に
環準同型は存在しない。それにもかかわらず、以下のモノイダル写像が存在する。これが本講演
における中心的対象である。

命題・定義 2.4 (J.-M. Fontaine). 標準的な射影 A→ A/pAは乗法的モノイドの同型

lim←−
x 7→xp

A
∼=−→ lim←−

Frob

A/pA = A♭

を誘導する。この同型の逆写像と 0 番目の射影 lim←−
x 7→xp

A → A の合成を ] : A♭ → A で表し、
Fontaineの（モノイダル）写像 と呼ぶ。

写像 ]を通して、いくつかの性質が Aから A♭ へと遺伝することがわかる。以下、モノイダル
写像の基本的結果を述べる。

命題 2.5 ([ČS24, §2.1]). $♭ ∈ A♭ を、($♭)♯ := ]($♭)が $ の単元倍になるようにとる。
(1) ] : A♭ → Aは Fp 代数の同型

A♭/($♭)pA♭ ∼=−→ A/$pA

を誘導する。特に、イデアル ($♭)は $♭ の選び方によらない。
(2) ] : A♭ → Aは非単位的環の同型

(A♭)ϖ♭-tor

∼=−→ Aϖ-tor

を誘導する。特に、Aが $ 捩れをもたないことと A♭ が $♭ 捩れをもたないことは同値で
ある。

環の拡大 R ⊂ S に対し、x ∈ S が R上概整 (almost integral over R) であるとは、S の R

部分代数 R[x]がある有限生成 R 加群に含まれるときをいう。R 上概整な S の任意の元が R に
属するとき、Rは S において完整閉 (completely integrally closed in S) であるという。

定理 2.6 ([EHS24, Main Theorem 1.3]). Aは$捩れをもたないとする。このとき、Aが A[ 1ϖ ]

において完整閉ならば、A♭ は A♭[ 1
ϖ♭ ]において完整閉である。

3 パーフェクトイド塔と Fontaineの写像
この節では、まずパーフェクトイド塔を説明し、本研究の結果であるパーフェクトイド塔に対

する Fontaine の写像の定義とその応用について述べる。定義 3.1 から定理 3.6 まで、定義（定
理）の番号は前節の定義 2.1から定理 2.6までにそれぞれ対応している。
環準同型の列

R = {Ri}i≥0 = {Ri, ti}i≥0 = (R0
t0−→ R1

t1−→ · · · → Ri
ti−→ · · · )

を環の塔 (tower of rings) と呼ぶ。環の塔 Rが完全 (perfect) であるとは、ある被約 Fp 代
数 R があり R

Frob−−−→ R
Frob−−−→ R

Frob−−−→ · · ·の形をした塔に同型であるときをいう。パーフェクト
イド塔は、完全塔の混標数への一般化である。



定義 3.1 ([INS25, Definition 3.21]). Rを環、I0 ⊂ Rをイデアルとする。環の塔R = {Ri, ti}i≥0

が (R, I0)から生じるパーフェクトイド塔 (perfectoid tower arising from (R, I0)) である
とは、以下の条件を満たすときをいう。

(a) R0 = Rかつ p ∈ I0.

(b) 任意の i ≥ 0 に対し、ti から誘導される環準同型 ti : Ri/I0Ri → Ri+1/I0Ri+1 は単射で
ある。

(c) 任意の i ≥ 0 に対し、Ri+1/I0Ri+1 上の Frobenius 自己準同型は次のように ti を経由
する。

Ri+1/I0Ri+1 Ri+1/I0Ri+1

Ri/I0Ri

Frob

Fi
ti

(d) 任意の i ≥ 0に対し、環準同型 Fi : Ri+1/I0Ri+1 → Ri/I0Ri は全射である。
(e) 任意の i ≥ 0に対し、I0Ri は Ri の Jacobson根基に含まれる。
(f) I0 は単項生成であり、かつ、R1 の単項生成イデアル I1 であって次を満たすものが存在
する。

(f-1) Ip1 = I0R1.

(f-2) 任意の i ≥ 0に対し、Ker(Fi) = I1(Ri+1/I0Ri+1).

(g) 任意の i ≥ 0 に対し、I0(Ri)I0-tor = (0) であり、かつ、全単射 (Fi)tor : (Ri+1)I0-tor →
(Ri)I0-tor が（一意に）存在して次の図式を可換にする。

(Ri+1)I0-tor Ri+1 Ri+1/I0Ri+1

(Ri)I0-tor Ri Ri/I0Ri

(Fi)tor Fi

例 3.2. (1) Fp 代数の塔Rがあるペア (R, (0))から生じるパーフェクトイド塔であることは、
Rが完全塔であることと同値となる。

(2) R = W (k)[[x1, . . . , xd]]/(p− f)を例 2.2のような完備正則局所環とすると、

R ↪→W (k)[[x
1
p

1 , . . . , x
1
p

d ]]/(p− f) ↪→ · · · ↪→W (k)[[x
1

pi

1 , . . . , x
1

pi

d ]]/(p− f) ↪→ · · ·

は (R, (p))から生じるパーフェクトイド塔である。
パーフェクトイド塔の他の例については、[INS25], [Ish24], [IS25]を参照してほしい。

以下、R = {Ri, ti}i≥0 を (R, I0)から生じるパーフェクトイド塔とする。このとき、帰納極限
R∞ := lim−→i≥0

Ri の I0 進完備化 R̂∞ はパーフェクトイド環となる（[INS25, Corollary 3.52]）。
パーフェクトイド塔に対する傾化が次のように定義される。

定義 3.3 ([INS25, Definitions 3.29 and 3.34]). 各 i ≥ 0に対し、Fp 代数の射影極限

Rs.♭
i

def
= lim←−

(
· · · Fi+1−−−→ Ri+1/I0Ri+1

Fi−→ Ri/I0Ri

)
をRの i番目の小傾化 (small tilt) と呼ぶ。{ti+j}j≥0 は自然に環準同型 ts.♭i : Rs.♭

i → Rs.♭
i+1 を

誘導し、Fp 代数の塔R♭ = {Rs.♭
i , ts.♭i }i≥0 が得られる。これをRの傾化 (tilt) と呼ぶ。



R♭ は完全塔となる（[INS25, Proposition 3.10 (2)]）。このような背景のもと、我々はパーフェ
クトイド塔に対する Fontaineの写像を定義した。

命題・定義 3.4 ([HIS26]). 任意の i ≥ 0 に対し、標準的な射影 {Ri+j + I0R̂∞ → (Ri+j +

I0R̂∞)/I0R̂∞ ∼= Ri+j/I0Ri+j}j≥0 は乗法的モノイドの同型

lim←−
(
· · · x 7→xp

−−−−→ Ri+1 + I0R̂∞
x 7→xp

−−−−→ Ri + I0R̂∞

) ∼=−→ Rs.♭
i

を誘導する。この同型の逆写像と 0番目の射影の合成を ](i) : Rs.♭
i → Ri + I0R̂∞ で表し、i番目

の Fontaineの（モノイダル）写像と呼ぶ。

写像 ](i) を使うことで、命題 2.5と定理 2.6の塔類似を得た:

命題 3.5. Is.♭0 で 0番目の射影 Rs.♭ = Rs.♭
0 → R/I0Rの核を表し、i ≥ 0を固定する。

(1) ](i) は Fp 代数の同型
Rs.♭

i /Is.♭0 Rs.♭
i

∼=−→ Ri/I0Ri (3.1)

を誘導する。
(2) ](i) は非単位的環の同型

(Rs.♭
i )Is.♭

0 -tor

∼=−→ (Ri)I0-tor (3.2)

を誘導する。

なお、(3.1)と (3.2)の同型は既に [INS25]によって示されており、我々の仕事はそれらが ](i)

によって誘導されることを明らかにしたことである。一つ目の主定理を述べる。

定理 3.6 ([HIS26]). Rは I0 捩れをもたないとし、I0 の生成元 f0 をひとつ選ぶ。このとき次は
同値となる。

(1) 任意の i ≥ 0に対し、Ri は Ri[
1
f0
]において完整閉である。

(2) R∞ は R∞[ 1
f0
]において完整閉である。

(3) R̂∞ は R̂∞[ 1
f0
]において完整閉である。

さらに、Rがこれらの条件を満たすならば、傾化R♭ もそうである。

ネーター環に対しては完整閉性と整閉性は一致するため、定理 3.6を使って小傾化 Rs.♭
i の整閉

性（正規性）を帰結できる例を考えることは自然である。そのような例として、次のようなパー
フェクトイド塔を構成したことが二つ目の主定理である。

定理 3.7 ([HIS26]). R を混標数の不分岐な完備正則局所環で剰余体は標数 pの完全体であると
する。R → S を正規局所整域の有限拡大で R[ 1p ]→ S[ 1p ]はエタールであるとする。各 n ≥ 0に
対し、Sn を Rn の (Rn ⊗R S)[ 1p ]における整閉包とする。このとき、ある有理数 ε ∈ (0, 1) ∩ Q
と整数 N ≥ 0が存在し、{Sn}n≥N は (SN , (pε))から生じるパーフェクトイド塔となる。

定理 3.7の構成および証明にあたっては、F. Andreattaの仕事 [An06]を大いに参考にしてい
ることをここで言及しておく。彼は定理 3.7 に現れる {Sn}n≥0 のように激しく分岐した塔を構
成し、古典的なノルム体の理論を大幅に一般化した。特に Andreattaは、専ら分岐理論を用いて



いる。実際、定理 3.7に現れる整数 N は SN/RN の判別式の p進付値が十分大きくなるように
選ばれる。最後に、定理 3.6の応用として次の結果を得る。

系 3.8 ([HIS26]). 定理 3.7の記号のもと、任意の n ≥ N に対し Ss.♭
n は正規環である。

系 3.8 の結果も本質的には [An06] によって示されているが、その証明は S♭
∞ 上の付値を用

いたものである。我々は、パーフェクトイド理論の基本定理ともいうべき概純性定理 (almost

purity theorem) を用いた別証を与えた。
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